منابع مشابه
Bagging Ensemble Selection
Ensemble selection has recently appeared as a popular ensemble learning method, not only because its implementation is fairly straightforward, but also due to its excellent predictive performance on practical problems. The method has been highlighted in winning solutions of many data mining competitions, such as the Netflix competition, the KDD Cup 2009 and 2010, the UCSD FICO contest 2010, and...
متن کاملBagging Ensemble Selection for Regression
Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, super...
متن کاملIntegrating Instance Selection and Bagging Ensemble using a Genetic Algorithm
Ensemble classification combines individually trained classifiers to obtain more accurate predictions than individual classifiers alone. Ensemble techniques are very useful for improving the generalizability of the classifier. Bagging is the method used most commonly for constructing ensemble classifiers. In bagging, different training data subsets are drawn randomly with replacement from the o...
متن کاملExtreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition
An extreme learning machine (ELM) is a recently proposed learning algorithm for a single-layer feed forward neural network. In this paper we studied the ensemble of ELM by using a bagging algorithm for facial expression recognition (FER). Facial expression analysis is widely used in the behavior interpretation of emotions, for cognitive science, and social interactions. This paper presents a me...
متن کاملBagging-based spectral clustering ensemble selection
Traditional clustering ensemble methods combine all obtained clustering results at hand. However, we can often achieve a better clustering solution if only parts of the clustering results available are combined. In this paper, we generalize the selective clustering ensemble algorithm proposed by Azimi and Fern and a novel clustering ensemble method, SELective Spectral Clustering Ensemble (SELSC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2014
ISSN: 2287-7843
DOI: 10.5351/csam.2014.21.5.411